Section 6.5: Properties of Logarithms

\#1-12: Evaluate each expression without a calculator. Check your answer using your calculator.

1) $\log _{2} 16$

This asks the question 2 to what power is $16,2^{x}=16$)

Answer: 4
3) $\log _{4} 16^{3}$ I need to rewrite the 16 as 4^{2}
$\log _{4}\left(4^{2}\right)^{3}=\log _{4} 4^{6}$ (this asks 4 to what power is $4^{6}, 4^{x}=4^{6}$)

Answer: 6
5) $\log _{8} 8^{5}$ (this asks 8 to what power is $8^{5}, 8^{x}=8^{5}$)

Answer: 5
7) $\log _{3} 243$ (this asks 3 to what power is $243,3^{x}=243$)

Answer: 5
9) $\ln (e)$

Rewrite to $\log _{\mathrm{e}} \mathrm{e}$ (this asks e to what power is $\mathrm{e}, \mathrm{e}^{\mathrm{x}}=\mathrm{e}$)
Answer: 1
11) $\log _{2} 64^{3}$ (I will change the 64 to 2^{5})
$\log _{2}\left(2^{6}\right)^{3}=\log _{2} 2^{18} \quad\left(\right.$ this asks 2 to what power is $\left.2^{18}, 2^{x}=2^{18}\right)$

Answer: 18
\#13 - 24: Expand into sums and differences of logarithms (express powers as factors).
13) $\log _{3}\left(x^{2} y^{3}\right)$

Write two logs, one for the x the other for the y. put a plus sign between as there is no fraction. Make the powers coefficients

Answer: $2 \log _{3} x+3 \log _{3} y$
15) $\log _{5}\left(x^{2} y^{6} z\right)$

Create 3 logs, one for each letter, no minuses needed as there are no fractions, make powers into coefficients

Answer: $2 \log _{5} x+6 \log _{5} y+\log _{5} z$
17) $\log _{2} \frac{x y^{3}}{z^{2}}$

Create three logs, one for each letter, the log with the z gets a minus in front since the z is in the denominator, make powers into coefficients

Answer: $\log _{2} x+3 \log _{2} y-2 \log _{2} z$
19) $\log _{2} \frac{x y}{w^{2} z^{5}}$

Create 4 logs, one for each letter, the logs with the w and z get minuses in front since those letters are in the denominator, make powers into coefficients.

Answer: $\log _{2} x+\log _{2} y-2 \log _{2} w-5 \log _{2} z$
21) $\log _{4}\left(x^{3} y^{4}\right)$

Create 2 logs, no minuses needed since no fraction, make powers into coefficients
Answer: $3 \log _{4} x+4 \log _{4} y$
23) $\log _{2}\left(x^{2} \cdot \sqrt[3]{y}\right)$

Write with fraction exponent
$\log _{2} x^{2} y^{1 / 3}$
Create two logs, no minuses as no fractions, make powers into coefficients
Answer: $2 \log _{2} x+\frac{1}{3} \log _{2} y$
\#25-36: Write the expression as a single logarithm. Write your answer with only positive exponents.
25) $3 \log _{2} x+4 \log _{2} y$
$=\log _{2} x^{3}+\log _{2} y^{4}$
Answer $=\log _{2}\left(x^{3} y^{4}\right)$
27) $2 \log _{3} x+4 \log _{3} y+\log _{3} z$
$=\log _{3} x^{2}+\log _{3} y^{4}+\log _{3} z$
Answer: $\log _{3}\left(x^{2} y^{4} z\right)$
29) $5 \log _{2} x+3 \log _{2} y-\log _{2} z$
$=\log _{2} x^{5}+\log _{2} y^{3}-\log _{2} z \quad$ (the z will go in the denominator because of the minus)
Answer: $\log _{2} \frac{x^{5} y^{3}}{z}$
31) $4 \log x-2 \log y-3 \log z$
$=\log x^{4}-\log y^{2}-\log z^{3}$
Both y and z will go in denominator because of the minuses
Answer: $\log \frac{x^{4}}{y^{2} z^{3}}$
33) $-2 \log _{3} x+\log _{3} y+\log _{3} z$
$=\log _{3} y+\log _{3} z-2 \log _{3} x$
$=\log _{3} y+\log _{3} z-\log _{3} x^{2}$
Answer: $\log _{3} \frac{y z}{x^{2}}$
35) $\ln x+3 \ln y-2 \ln z$
$=\ln x+\ln y^{3}-\ln z^{2}$
Answer: $\ln \frac{x y^{3}}{z^{2}}$
\#37-45: Use the change of base formula and your calculator to evaluate each logarithm, round your answer to 2 decimal places.
37) $\log _{2} 3$ ($\log 3 / \log 2$ on my calculator)

Answer: 1.58
39) $\log _{3} 5(\log 5 / \log 3$ on my calculator)

Answer: 1.46
41) $\log _{4} 0.65$ ($\log 0.65 / \log 4$ on my calculator)

Answer: -. 31
43) $\log _{5} 18(\log 18 / \log 5$ on my calculator)

Answer: 1.80
45) $\log _{9} 0.123(\log 0.123 / \log 9$ on my calculator)

Answer: -. 95
$\# 46$ - 57: Find the following. Given $\log _{\mathrm{b}} x=5, \log _{\mathrm{b}} y=10, \log _{\mathrm{b}} z=7$.
47) $\log _{\mathrm{b}} \mathrm{y}+\log _{\mathrm{b}} \mathrm{z}=10+7=17$

Answer: 17
49) $\log _{\llcorner } y^{4}=4 \log _{\llcorner } y=4(10)=40$

Answer: 40
51) $\log _{\mathrm{b}} y z=\log _{\mathrm{b}} y+\log _{\mathrm{b}} z=10+7=17$

Answer: 17
53) $\log _{b}\left(y^{3} z^{5}\right)=3 \log _{b} y+5 \log _{b} z=3(10)+5(7)=30+35=65$

Answer: 65
55) $\log _{b} \frac{x^{4}}{y}=4 \log _{b} \mathrm{x}-\log _{b} \mathrm{y}=4(5)-10=20-10=10$

Answer: 10
57) $\log _{b} \frac{x}{y z^{3}}=\log _{b} \mathrm{x}-\log _{\mathrm{b}} \mathrm{y}-3 \log _{\mathrm{b}} \mathrm{z}=5-10-3(7)=5-10-21=-26$

Answer: -26

